Notes Weil Image Sums and Counting Image Sets **Over Finite Fields** Joshua E. Hill hillje@math.uci.edu **Department of Mathematics** University of California, Irvine UCI Math Graduate Student Colloquium 2011-Oct-19 http://bit.ly/WeilImg University of California · Irvine Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium Talk Outline Notes 1 Introduction 2 (Condensed) Literature Survey **3** Preliminary Results 4 Conclusion (and Beyond) University of California · Irvine Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium

Introduction Outline Notes 1 Introduction 2 (Condensed) Literature Survey Cardinality of Image Sets p-adic Point Counting 3 Preliminary Results ■ Weil Image Sum Bounds ■ Image Set Cardinality 4 Conclusion (and Beyond) University of California · Irvine Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium **Applications** Notes Exponential sums are a reoccurring tool Number Theory Sums of Squares Class field theory Discrete Fourier Transform ■ Implemented by some style of FFT: "If you speed up any nontrivial algorithm by a factor of a million or so, the world will beat a path toward finding useful applications for it." - Numerical Recipes §13.0 Paley graphs ► Computer Science ■ Graph theoretic applications ■ Random number generators University of California · Irvine

Characters

Notes

Definition

A character is a monoid homomorphism from a monoid G to the units of a field K^* .

- ▶ We will be principally working with finite fields, and our co-domain is \mathbb{C}^* .
- Fields have two obvious group structures we can use:
 - Additive
 - Multiplicative
- For this discussion, we are mainly concerned with additive characters.

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

5 / 51

Additive Characters

Notes

We can represent all additive characters of the form $\mathbb{F}_q \to \mathbb{C}^*$ nicely.

Definition

Let \mathbb{F}_q be a finite field of $q=p^m$ elements (where p is prime). The (absolute) trace of $\alpha\in\mathbb{F}_q$ is $\mathrm{Tr}(\alpha)=\sum_{j=0}^{m-1}\alpha^{p^j}$.

Theorem (Weber 1882)

All additive characters of this type are of the form $\psi_{\gamma}(\alpha) = e^{\frac{2\pi i}{p} \operatorname{Tr}(\gamma \alpha)}$ for some $\gamma \in \mathbb{F}_q$.

Weil Sums

Notes

Definition

A Weil Sum is any sum of the form

$$W_{f,\gamma} = \sum_{c \in \mathbb{F}_q} \psi_{\gamma} \left(f(c) \right)$$

where f(x) is a polynomial over \mathbb{F}_q and ψ_{ν} is an additive character.

Weil determined bounds:

Theorem (Weil 1948)

If $f(x) \in \mathbb{F}_q[x]$ is of degree d > 1 with $p \nmid d$ and ψ_{γ} is a non-trivial additive character of \mathbb{F}_q , then $|W_{f,\gamma}| \leq (d-1)\sqrt{q}$.

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

Notes

Weil Image Sums

- ▶ We adopt the notation $V_f = f(\mathbb{F}_q)$
- ▶ We examine incomplete Weil sums on the image set

$$S_{f,\gamma} = \sum_{\alpha \in V_f} \psi_{\gamma}(\alpha)$$

▶ To remove the dependence on the choice of character, we look at the maximal such sum (over non-trivial additive characters)

$$\left|S_f\right| = \max_{\gamma \in \mathbb{F}_q^*} \left|S_{f,\gamma}\right|$$

Weil Image Sum Example

Example

▶ In \mathbb{F}_4 , we'll represent field elements as polynomials over $\mathbb{F}_2[t]$ mod the irreducible $t^2 + t + 1$.

► Examine $f(x) = x^3 + x$:

α	$f(\alpha)$	$\operatorname{Tr}(f(\alpha))$	$\operatorname{Tr}(tf(\alpha))$	$\operatorname{Tr}((t+1)f(\alpha))$
0	0	0	0	0
1	0	0	0	0
t	t+1	1	0	1
t+1	t	1	1	0

 $W_{f,1} = e^{\pi i 0} + e^{\pi i 0} + e^{\pi i 1} + e^{\pi i 1} = 0$

 \blacktriangleright # (V_f) = 3

 $S_{f,1} = e^{\pi i 0} + e^{\pi i 1} + e^{\pi i 1} = -1$

 $ightharpoonup |S_f| = 1$ (this is maximal)

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

Notes

Notes

Conjecture

Conjecture (Wan)

For all polynomials of degree d, with $p \nmid d$:

1. There is a real number c_d such that $|S_f| \le c_d \sqrt{q}$ for all q

2. $c_d \leq c\sqrt{d}$

3. $c \le 1$

Some notes about conjecture (1):

 \blacktriangleright (1) is true when $q \gg d$ as a consequence of Cohen / Chebotarev / Lenstra-Wan (unpublished).

▶ If d = o(q), then (1) isn't very interesting.

What is Success? Notes Better information about $|S_f|$ or $\#(V_f)$: ► Better bounds ► An algorithm for computing or estimating ▶ Results that significantly refine the complexity class of these problems University of California · Irvine Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium 11 / 51 **Literature Survey Outline** Notes 1 Introduction 2 (Condensed) Literature Survey ■ Cardinality of Image Sets p-adic Point Counting 3 Preliminary Results ■ Weil Image Sum Bounds ■ Image Set Cardinality 4 Conclusion (and Beyond) University of California · Irvine

Notes Notes

Subsection 1

Cardinality of Image Sets

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 13 / 51

Cardinality of Image Sets

$$\left\lceil \frac{q}{d} \right\rceil \le \# \left(V_f \right) \le q$$

- ► These bounds are sharp!
- ▶ If # $(V_f) = \lceil \frac{q}{d} \rceil$, then f is a polynomial with a minimal value set.
- ▶ If $\#(V_f) = q$, then f is a permutation polynomial.

The Shape of the Problem (Average Results)

Notes

A vital companion function:

$$f^*(u,v) = \frac{f(u) - f(v)}{u - v}$$

▶ If $f^*(u, v)$ is absolutely irreducible then on average $\#(V_f) \sim \mu_d q + O_d(1)$ with μ_d is the series $1 - e^{-1}$ truncated at dterms. [Uchiyama 1955]

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 15 / 51

Asymptotic Results I

Notes

$$\#(V_f) = \mu q + O_d(\sqrt{q})$$

First asymptotic results [Birch and Swinnerton-Dyer, 1959]

 $\blacktriangleright \mu$ is dependent on some Galois groups induced by f

$$G(f) = \operatorname{Gal}\left(f(x) - t/\mathbb{F}_q(t)\right) \text{ and } G^+(f) = \operatorname{Gal}\left(f(x) - t/\overline{\mathbb{F}}_q(t)\right)$$

where $G^+(f)$ is viewed as a subgroup of G(f).

- ▶ If $G^+(f) \cong S_d$ (f is a "general polynomial") then $\mu = \mu_d$.
- ▶ Otherwise μ depends only on G(f), $G^+(f)$ and d.

Asymptotic Results II

Notes

Cohen gave a way to explicitly calculate μ [Cohen, 1970]

- ▶ Let *K* be the splitting field for f(x) t over $\mathbb{F}_q(t)$
- ▶ Denote $k' = K \cap \bar{\mathbb{F}}_q$
- $G^*(f) = \{ \sigma \in G(f) \mid K_{\sigma} \cap k' = \mathbb{F}_q \}$
- $G_1(f) = \{ \sigma \in G(f) \mid \sigma \text{ fixes at least one point} \}$
- $G_1^*(f) = G_1(f) \cap G^*(f)$
- $\blacktriangleright \text{ We then have } \mu = \frac{\#(G_1^*)}{\#(G^*)}.$
- lacktriangle This provides a wonderful combinatorial explanation of μ_d (proportion of non-derangements!)

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 17 / 51

Exact Results

Notes

Exact values for $\#(V_f)$ are known for very few classes of polynomials:

- ► Permutation polynomials (and exceptional polynomials)
- ▶ Polynomials with a minimal (or very small) value set
- Other

Permutation Polynomials

Notes

The class of polynomials where $\#(V_f) = q$

- 1. These polynomials are uncommon ($\sim e^{-q}$ for large q)
- 2. Dickson found all of the permutation polynomials $d \le 6$ [Dickson 1896]
- 3. There is a ZPP algorithm to test to see if f is a permutation polynomial. [Ma and von zur Gathen, 1995]
- 4. There is a deterministic algorithm to see if f is a permutation polynomial that runs slightly sub-linear in g. [Shparlinski, 1992]

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

19 / 51

Notes

Exceptional Polynomials

Hayes harmonized these apparently disparate results by casting this into an Algo-Geometric setting [Hayes 1967]

Definition

 $f(X) \in \mathbb{F}_q[X]$ is an exceptional polynomial if when $f^*(X,Y)$ is factored into irreducibles over $\mathbb{F}_q[X,Y]$ and all of these irreducible factors are not absolutely irreducible (that is, each irreducible factor cannot be irreducible over $\bar{\mathbb{F}}_q[X,Y]$.)

- ► All exceptional polynomials are permutation polynomials [Cohen 1970], [Wan, 1993]
- ▶ If d > 1, $p \nmid d$ and $q > d^4$, then all permutation polynomials are exceptional polynomials. (by Lang-Weil Bound)
- f is an exceptional polynomial if and only if $\mu = 1$.

Notes

Subsection 2

p-adic Point Counting

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 21 / 51

Notes

The Zeta Function on Algebraic Sets

Consider the simultaneous zeros of a set of polynomials $f_1, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ over $\bar{\mathbb{F}}_q$; call this variety X.

▶ Let $X(\mathbb{F}_{q^k}) = X \cap \mathbb{F}_{q^k}$.

Definition

The zeta function of the algebraic set X is defined to be

$$Z(X) = Z(X,T) = \exp\left(\sum_{k=1}^{\infty} \frac{\#\left(X(F_{q^k})\right)}{k} T^k\right)$$

Curiouser and Curiouser Notes Weil conjectured that the zeta function is rational. ▶ This conjecture was first proven by Dwork in 1960 using p-adic methods. ▶ This conjecture was again proven by Grothendieck in 1964 using ℓ -adic cohomological methods. ▶ If it's rational, then intuitively there is only a fixed amount of information necessary to fully establish Z(X). This is fundamentally what enables the p-adic approach to calculating Z(X). ightharpoonup Approaches to building up Z(X) generally start by calculating $X(\mathbb{F}_{a^k})$ up to a suitably large k. ▶ We only care about the number of points in \mathbb{F}_q , so we only need to look at $X(\mathbb{F}_a)$. University of California · Irvine Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium 23 / 51 **Point Counting Algorithm** Notes The point counting algorithm of Lauder and Wan [Lauder-Wan 2008]: Lemma If f has total degree d in n variables and $p = O((d \log q)^C)$ for some constant C, then # $(X(\mathbb{F}_{a^k}))$ can be calculated in polynomial time (polynomial in p, m, k, and d; exponential in n).

Preliminary Results Outline	Notes
1 Introduction	
 (Condensed) Literature Survey Cardinality of Image Sets p-adic Point Counting 	
Preliminary ResultsWeil Image Sum Bounds	
Image Set Cardinality	
4 Conclusion (and Beyond)	
Wiversity of California · Irvine	
Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium 25 / 51	
Joshad E. Thir (OC IT Thire) Well image Sains and Counting image Sees Chadadac Consequent 257-51	
Joshua E. viiii (oc ii viiic) Weli iiiiige suins and counting iiiiige sees Graduate conoquisiii 257 51	
I Come Seeking Attribution	Notes
	Notes
	Notes
	Notes
I Come Seeking Attribution	Notes
	Notes
I Come Seeking Attribution	

Notes

Subsection 1

Weil Image Sum Bounds

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 27 / 51

Notes

Too Many Polynomials on the Dance Floor I

► Start with an arbitrary degree *d* polynomial

$$f(x) = a_d x^d + \dots + a_0, a_i \in \mathbb{F}_q.$$

• f(x) and $f(x - \lambda)$ have the same image set.

Setting $\lambda = \frac{a_{d-1}}{da_d}$ removes x^{d-1} term.

Thus, WLOG we can examine $f(x) = a_d x^d + a_{d-2} x^{d-2} + \dots + a_0$.

• We can do better: $f(x) = x^d + a_{d-2}x^{d-2} + \cdots + a_1x$.

Too Many Polynomials on the Dance Floor II

Let I_f be some minimal preimage set that produces V_f .

$$|S_f| = \left| \sum_{\beta \in I_f} \psi_{\gamma} (f(\beta)) \right|$$

$$= \left| \sum_{\beta \in I_f} \psi_{\gamma} \left(a_d \beta^d + a_{d-2} \beta^{d-2} + \dots + a_1 \beta + a_0 \right) \right|$$

$$= \left| \sum_{\beta \in I_f} \psi_{\gamma} \left(a_d \beta^d + a_{d-2} \beta^{d-2} + \dots + a_1 \beta \right) \psi_{\gamma} (a_0) \right|$$

$$= \left| \sum_{\beta \in I_f} \psi_{\gamma a_d} \left(\beta^d + \frac{a_{d-2}}{a_d} \beta^{d-2} + \dots + \frac{a_1}{a_d} \beta \right) \right|$$

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

29 / 51

Bounding $|S_f|$

We introduce two expressions to help us discuss bounds:

$$\Phi_d = \max_{\substack{f \in \mathbb{F}_q[x] \\ \text{deg } f = d}} \frac{\left| S_f \right|}{\sqrt{q}}$$

- **Examining** Φ_d gives us insight into the value c_d : For all q, $c_d \geq \Phi_d$.
- ▶ A related question: for a given q, what is the maximum $|S_f|$ possible?

$$\left|S_{A_q}\right| = \max_{A \subset \mathbb{F}_q} \left|\sum_{\alpha \in A} \psi_1(\alpha)\right|$$

Notes		
Notes		

A Word of Warning

Notes

- ightharpoonup At least one polynomial produces A_q as an image set.
- ► This polynomial does not necessarily have degree relatively prime to p.
- ▶ Not every image set can be obtained as the image of a polynomial whose degree is relatively prime to p.

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 31 / 51

An Example of Warning

Example

- ▶ In \mathbb{F}_4 again.
- ► Examine $f(x) = x^2 + x$ (*p*-linear!):

α	$f(\alpha)$
0	0
1	0
t	1
t+1	1

- ► Clearly no polynomial with degree 0 or 1 will have this image.
- ► Idea: We don't expect that degree 3 polynomials would be linear.
- ► Actual Proof: Just evaluate all degree 3 polynomials in $\mathbb{F}_4[x]$ and note that none of them have this image.

Bounding Theorem Proof Outline I

Theorem

If $q = p^m$ then

$$\left| S_{A_q} \right| = \begin{cases} 2^{m-1} & p = 2\\ \frac{p^{m-1}}{2} \csc\left(\frac{\pi}{2p}\right) & p > 2 \end{cases}$$

The "interesting part" of the proof:

- ▶ Trace is an \mathbb{F}_p -linear transform, and surjects onto \mathbb{F}_p .
- $\#(\ker Tr) = p^{m-1}$
- ▶ Thus each element is hit p^{m-1} times.
- ▶ To find A_a , find A_p and then choose all the elements in the same equivalence classes.

This reduces the question to the case where q = p. The rest is "proof by calculus".

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 33 / 51

Notes

Notes

Bounding Theorem Proof Outline II

- \triangleright We are now summing distinct pth roots of unity, seeking the largest modulus possible.
- ► A proposed maximal sum must include all the roots of unity with angle $\leq \pi/2$ to the sum.
- ightharpoonup p = 2 case is trivial. Assume p is odd.
- First stab: All of the pth roots of unity in quadrants I and IV?

$$\sum_{j=-\lfloor p/4\rfloor}^{\lfloor p/4\rfloor} e^{\frac{2\pi i j}{p}} = \frac{1}{2} \csc\left(\frac{\pi}{2p}\right)$$

► This is maximal, but obviously not unique.

	University	of	California		Irvine
--	------------	----	------------	--	--------

Consequences of the Bounding Theorem

Notes

Corollary

As $p o \infty$ along the primes, $\left|S_{A_q}\right| \searrow rac{q}{\pi}$

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

Notes

Subsection 2

Image Set Cardinality

Big-O and Soft-O Notation

- ► We have two eventually positive real valued functions $A, B: \mathbb{N}^k \to \mathbb{R}^+$. Take x as an *n*-tuple, with $\mathbf{x} = (x_1, \dots, x_n)$
- ▶ We'll write $|\mathbf{x}|_{\min} = \min_i x_i$.

Definition

- 1. $A(\mathbf{x}) = O(B(\mathbf{x}))$ if there exists a positive real constant C and an integer N so that if $|\mathbf{x}|_{\min} > N$ then $A(\mathbf{x}) \leq CB(\mathbf{x})$.
- 2. $A(\mathbf{x}) = \tilde{O}(B(\mathbf{x}))$ if there exists a positive real constant C' so that $A(\mathbf{x}) = O(B(\mathbf{x}) \log^{C'} (B(\mathbf{x}) + 3))$

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 37 / 51

Notes

Notes

Naïve Algorithms

How to calculate $\#(V_f)$?

- **•** Evaluate f at each point in \mathbb{F}_q . Cost: $\tilde{O}(qd)$ bit operations.
- ▶ For each $a \in \mathbb{F}_q$, $a \in V_f \Leftrightarrow \deg \gcd(f(x) a, X^q X) > 0$. Cost: $\tilde{O}(qd)$ bit operations.

$\#(V_f)$ and Point Counting

Notes

Another connection between $\#(V_f)$ and an algo-geometric structure:

Theorem

If $f \in \mathbb{F}_a[x]$ of positive degree d, then

$$\#(V_f) = \sum_{i=1}^d (-1)^{i-1} N_i \sigma_i \left(1, \frac{1}{2}, \dots, \frac{1}{d}\right)$$

where $N_k = \#\left(\left\{(x_1,\ldots,x_k) \in \mathbb{F}_q^k \mid f(x_1) = \cdots = f(x_k)\right\}\right)$ and σ_i is the *ith elementary symmetric function on d elements.*

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 39 / 51

Notes

Proof Outline I

- $V_{f,i} = \{x \in V_f \mid \#(f^{-1}(x)) = i\}$ with $1 \le i \le d$ forms a partition of V_f .
- Let $m_i = \#(V_{f,i})$. Thus $m_1 + \cdots + m_d = \#(V_f)$. Introduce a new value $\xi = -\#(V_f)$. We then have:

$$m_1 + \dots + m_d + \xi = 0 \tag{1}$$

- ▶ Define the space $\tilde{N}_k = \{(x_1, \dots, x_k) \in \mathbb{F}_q^k \mid f(x_1) = \dots = f(x_k)\}$. Then $N_k = \#(\tilde{N}_k)$.
- ► By a counting argument,

$$m_1 + 2^k m_2 + \dots + d^k m_d = N_k \tag{2}$$

Proof Outline II

Notes

Arrange this into a system of equations:

$$\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & \cdots & d & 0 \\ 1 & 2^2 & \cdots & d^2 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & 2^d & \cdots & d^d & 0 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ \vdots \\ \xi \end{pmatrix} = \begin{pmatrix} 0 \\ N_1 \\ N_2 \\ \vdots \\ N_d \end{pmatrix}$$

Solve for ξ using Cramer's rule. There are some unfortunate details. See the paper. :-)

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

41 / 51

Variations on a Theme of Matrices

Notes

You can just as reasonably solve for m_j through the same process:

Proposition

$$m_j = {d \choose j} \frac{1}{j} \sum_{i=1}^d (-1)^{j+i} N_i \sigma_{i-1} \left(1, \dots, \frac{1}{j-1}, \frac{1}{j+1}, \dots, \frac{1}{d} \right)$$

Application of Lauder-Wan

Notes

- ▶ This equation is in terms of N_k , which we must establish.
- \tilde{N}_k isn't of any particularly desirable form: in particular, we can't assume that it is non-singular projective or an abelian variety (if it were, faster algorithms would apply!)
- ► We'll proceed through trickery.

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

43 / 51

Algorithm for finding # (V_f)

Notes

Theorem

There is a an explicit polynomial R and a deterministic algorithm which, for any $f \in \mathbb{F}_q[x]$ (with $q = p^m$, p a prime, f degree d), calculates $\#(V_f)$. This algorithm requires a number of bit operations bounded by $R(m^d d^d p^d)$.

More explicit performance: $\tilde{O}\left(2^{8d+1}m^{6d+4}d^{12d-1}p^{4d+2}\right)$ bit operations.

Getting to "There" From "Here"

Define:

$$F_k(\mathbf{x}, \mathbf{z}) = z_1 (f(x_1) - f(x_2)) + \dots + z_{k-1} (f(x_1) - f(x_k))$$

- ▶ If $\gamma \in \tilde{N}_k$ then $F_k(\gamma, \mathbf{z}) = 0$.
- If $\gamma \in \mathbb{F}_q^k \setminus \tilde{N}_k$ then the solutions to $F_k(\gamma, \mathbf{z})$ form a (k-2)-dimensional subspace of \mathbb{F}_q^{k-1} .
- ▶ If we denote the number of solutions to $F_k(\mathbf{x}, \mathbf{z})$ as $\#(F_k)$, then we have

$$\#(F_k) = q^{k-1}N_k + q^{k-2}(q^k - N_k)$$

► So, we can solve:

$$N_k = \frac{\#(F_k) - q^{2k-2}}{q^{k-2}(q-1)}$$

And that's it!

University of California · Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium

45 / 51

Conclusion Outline

- Introduction
- 2 (Condensed) Literature Survey
 - Cardinality of Image Sets
 - *p*-adic Point Counting
- Preliminary Results
 - Weil Image Sum Bounds
 - Image Set Cardinality
- 4 Conclusion (and Beyond)

University of California · Irvine

Notes

Conclusion	Notes
 We outlined problems in finite fields concerning: incomplete Weil exponentials sums (Weil Image Sums) the image set of a polynomial We surveyed literature relevant to these problems. We discussed new findings related to these problems. 	
University of California · Irvine	
Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium 47 / 51	
	Notes
Section 4	
Conclusion (and Beyond)	
University of California · Irvine	

Notes **Future Work Goals** \triangleright A first step at understanding this style of sum is understanding V_f . \blacksquare Calculating V_f . **E**stimating V_f . \blacksquare Refining bounds for or estimating μ . lacktriangle Refining the constant associated with the $O_d(\sqrt{q})$ term; current term is highly exponential in d; $d^{O(1)}$ may be possible. ▶ We seek to investigate incomplete exponential sums evaluated on image sets. ■ Work thus far has been with additive characters and Weil sums. ■ Many of the same approaches would work with Weil sums of multiplicative characters. Other sum styles can also be investigated: incomplete Gauss and Jacobi sums may also yield results. University of California · Irvine Joshua E. Hill (UC Irvine) Weil Image Sums and Counting Image Sets Graduate Colloquium Remember What "Success" Means Notes We look for results of the following styles: ► Improved explicit bounds. ► Algorithms for explicitly calculating values. ► Algorithms for producing estimates. ▶ Refinements to the complexity class of these problems.

Colophon

- ► The principal font is Evert Bloemsma's 2004 humanist san-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most san-serif fonts. Legato was Evert Bloemsma's final font prior to his untimely death at the age of 46.
- ► Equations are typeset using the MathTime Professional II (MTPro2) fonts, a font package released in 2006 by the great mathematical expositor Michael Spivak.
- ► The serif text font (which appears mainly as text within mathematical expressions) is Jean-François Porchez's wonderful 2002 Sabon Next typeface.
- ► The URLs are typeset in Luc(as) de Groot's 2005 Consolas, a monospace font with excellent readability.
- ▶ Diagrams were produced in Mathematica.

	University of	f California	· Irvine
--	---------------	--------------	----------

Joshua E. Hill (UC Irvine)

Weil Image Sums and Counting Image Sets

Graduate Colloquium 51 / 51

Notes

Notes	
Notes	