Weil Image Sums and Counting Image Sets
Over Finite Fields

Joshua E. Hill
hillje@math.uci.edu
Department of Mathematics
University of California, Irvine

UCI Math Graduate Student Colloquium
 2011-Oct-19
 http://bit.ly/WeilImg

(14) University of California • Irvine

Joshua E. Hill (UC Irvine)
Weil Image Sums and Counting Image Sets
Graduate Colloquium
1/51

Talk Outline

Notes

1 Introduction
2 (Condensed) Literature Survey
3 Preliminary Results

4 Conclusion (and Beyond)

1 Introduction

2 (Condensed) Literature Survey

- Cardinality of Image Sets
- p-adic Point Counting

3 Preliminary Results

- Weil Image Sum Bounds
- Image Set CardinalityConclusion (and Beyond)
(14) University of California • Irvine

Joshua E. Hill (UC Irvine)

Applications

Notes

\qquad
Exponential sums are a reoccurring tool

- Number Theory
- Sums of Squares
- Class field theory
- Discrete Fourier Transform

■ Implemented by some style of FFT: "If you speed up any nontrivial algorithm by a factor of a million or so, the world will beat a path toward finding useful applications for it." - Numerical Recipes §13.0

- Paley graphs
- Computer Science

■ Graph theoretic applications

- Random number generators

Definition

A character is a monoid homomorphism from a monoid G to the units of a field K^{*}.

- We will be principally working with finite fields, and our co-domain is \mathbb{C}^{*}.
- Fields have two obvious group structures we can use:
- Additive
- Multiplicative
- For this discussion, we are mainly concerned with additive characters.

Additive Characters

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Definition

A Weil Sum is any sum of the form

$$
W_{f, \gamma}=\sum_{c \in \mathbb{F}_{q}} \psi_{\gamma}(f(c))
$$

where $f(x)$ is a polynomial over \mathbb{F}_{q} and ψ_{γ} is an additive character.

Weil determined bounds:

Theorem (Weil 1948)

If $f(x) \in \mathbb{F}_{q}[x]$ is of degree $d>1$ with $p \nmid d$ and ψ_{γ} is a non-trivial additive character of \mathbb{F}_{q}, then $\left|W_{f, \gamma}\right| \leq(d-1) \sqrt{q}$.
14. University of California - Irvine

Joshua E. Hill (UC Irvine)

Weil Image Sums

Notes

\qquad

- We adopt the notation $V_{f}=f\left(\mathbb{F}_{q}\right)$
- We examine incomplete Weil sums on the image set

$$
S_{f, \gamma}=\sum_{\alpha \in V_{f}} \psi_{\gamma}(\alpha)
$$

- To remove the dependence on the choice of character, we look at the maximal such sum (over non-trivial additive characters)

$$
\left|S_{f}\right|=\max _{\gamma \in \mathbb{F}_{q}^{*}}\left|S_{f, \gamma}\right|
$$

Example

- In \mathbb{F}_{4}, we'll represent field elements as polynomials over $\mathbb{F}_{2}[t]$ mod the irreducible $t^{2}+t+1$.
- Examine $f(x)=x^{3}+x$:

α	$f(\alpha)$	$\operatorname{Tr}(f(\alpha))$	$\operatorname{Tr}(t f(\alpha))$	$\operatorname{Tr}((t+1) f(\alpha))$
0	0	0	0	0
1	0	0	0	0
t	$t+1$	1	0	1
$t+1$	t	1	1	0

- $W_{f, 1}=e^{\pi i 0}+e^{\pi i 0}+e^{\pi i 1}+e^{\pi i 1}=0$
- \# $\left(V_{f}\right)=3$
- $S_{f, 1}=e^{\pi i 0}+e^{\pi i 1}+e^{\pi i 1}=-1$
- $\left|S_{f}\right|=1$ (this is maximal)

Conjecture

Conjecture (Wan)

For all polynomials of degree d, with $p \nmid d$:

1. There is a real number c_{d} such that $\left|S_{f}\right| \leq c_{d} \sqrt{q}$ for all q
2. $c_{d} \leq c \sqrt{d}$
3. $c \leq 1$

Some notes about conjecture (1):

- (1) is true when $q \gg d$ as a consequence of Cohen / Chebotarev / Lenstra-Wan (unpublished).
- If $d=o(q)$, then (1) isn't very interesting.

Better information about $\left|S_{f}\right|$ or \# $\left(V_{f}\right)$:

- Better bounds
- An algorithm for computing or estimating
- Results that significantly refine the complexity class of these problems
(14) University of California • Irvine

Literature Survey Outline

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Subsection 1

Cardinality of Image Sets

(14) University of California • Irvine

Joshua E. Hill (UC Irvine)

Cardinality of Image Sets

Notes

$$
\left\lceil\frac{q}{d}\right\rceil \leq \#\left(V_{f}\right) \leq q
$$

- These bounds are sharp!
- If $\#\left(V_{f}\right)=\left\lceil\frac{q}{d}\right\rceil$, then f is a polynomial with a minimal value set.
- If \# $\left(V_{f}\right)=q$, then f is a permutation polynomial.

A vital companion function:

$$
f^{*}(u, v)=\frac{f(u)-f(v)}{u-v}
$$

- If $f^{*}(u, v)$ is absolutely irreducible then on average
\# $\left(V_{f}\right) \sim \mu_{d} q+O_{d}(1)$ with μ_{d} is the series $1-e^{-1}$ truncated at d terms. [Uchiyama 1955]

Asymptotic Results I

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cohen gave a way to explicitly calculate μ [Cohen, 1970]

- Let K be the splitting field for $f(x)-t$ over $\mathbb{F}_{q}(t)$
- Denote $k^{\prime}=K \cap \overline{\mathbb{F}}_{q}$
- $G^{*}(f)=\left\{\sigma \in G(f) \mid K_{\sigma} \cap k^{\prime}=\mathbb{F}_{q}\right\}$
- $G_{1}(f)=\{\sigma \in G(f) \mid \sigma$ fixes at least one point $\}$
- $G_{1}^{*}(f)=G_{1}(f) \cap G^{*}(f)$
- We then have $\mu=\frac{\#\left(G_{1}^{*}\right)}{\#\left(G^{*}\right)}$.
- This provides a wonderful combinatorial explanation of μ_{d} (proportion of non-derangements!)

Exact Results

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The class of polynomials where \# $\left(V_{f}\right)=q$

1. These polynomials are uncommon ($\sim e^{-q}$ for large q)
2. Dickson found all of the permutation polynomials $d \leq 6$ [Dickson 1896]
3. There is a ZPP algorithm to test to see if f is a permutation polynomial. [Ma and von zur Gathen, 1995]
4. There is a deterministic algorithm to see if f is a permutation polynomial that runs slightly sub-linear in q. [Shparlinski, 1992]

Exceptional Polynomials

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- f is an exceptional polynomial if and only if $\mu=1$.
(1) Universtity of California \cdot Irvine

Subsection 2

```
p-adic Point Counting
```

(14) University of California - Irvine

The Zeta Function on Algebraic Sets

Consider the simultaneous zeros of a set of polynomials
$f_{1}, \ldots, f_{s} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ over $\overline{\mathbb{F}}_{q}$; call this variety X.

- Let $X\left(\mathbb{F}_{q^{k}}\right)=X \cap \mathbb{F}_{q^{k}}$.

Definition

The zeta function of the algebraic set X is defined to be

$$
Z(X)=Z(X, T)=\exp \left(\sum_{k=1}^{\infty} \frac{\#\left(X\left(F_{q^{k}}\right)\right)}{k} T^{k}\right)
$$

- Weil conjectured that the zeta function is rational.
- This conjecture was first proven by Dwork in 1960 using p-adic methods.
- This conjecture was again proven by Grothendieck in 1964 using ℓ-adic cohomological methods.
- If it's rational, then intuitively there is only a fixed amount of information necessary to fully establish $Z(X)$. This is fundamentally what enables the p-adic approach to calculating $Z(X)$.
- Approaches to building up $Z(X)$ generally start by calculating $X\left(\mathbb{F}_{q^{k}}\right)$ up to a suitably large k.
- We only care about the number of points in \mathbb{F}_{q}, so we only need to look at $X\left(\mathbb{F}_{q}\right)$.
(14) University of California • Irvine

Joshua E. Hill (UC Irvine)
Weil Image Sums and Counting Image Sets
Graduate Colloquium $23 / 51$

Point Counting Algorithm

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1 Introduction

2 (Condensed) Literature Survey

- Cardinality of Image Sets
- - -adic Point Counting

3 Preliminary Results

- Weil Image Sum Bounds
- Image Set Cardinality

4 Conclusion (and Beyond)
(14) Unverstity of Callfornia • Irvine

Joshua E. Hill (UC Invine)
Weil Image Sums and Counting Image Sets
Graduate Colloquium
25/51

I Come Seeking... Attribution

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Subsection 1

Weil Image Sum Bounds

Too Many Polynomials on the Dance Floor I

Notes
\qquad
\qquad

- Start with an arbitrary degree d polynomial
$f(x)=a_{d} x^{d}+\cdots+a_{0}, a_{i} \in \mathbb{F}_{q}$.
- $f(x)$ and $f(x-\lambda)$ have the same image set.
$■$ Setting $\lambda=\frac{a_{d-1}}{d a_{d}}$ removes x^{d-1} term.
- Thus, WLOG we can examine $f(x)=a_{d} x^{d}+a_{d-2} x^{d-2}+\cdots+a_{0}$.
- We can do better: $f(x)=x^{d}+a_{d-2} x^{d-2}+\cdots+a_{1} x$.

Let I_{f} be some minimal preimage set that produces V_{f}.

$$
\begin{aligned}
\left|S_{f}\right| & =\left|\sum_{\beta \in I_{f}} \psi_{\gamma}(f(\beta))\right| \\
& =\left|\sum_{\beta \in I_{f}} \psi_{\gamma}\left(a_{d} \beta^{d}+a_{d-2} \beta^{d-2}+\cdots+a_{1} \beta+a_{0}\right)\right| \\
& =\left|\sum_{\beta \in I_{f}} \psi_{\gamma}\left(a_{d} \beta^{d}+a_{d-2} \beta^{d-2}+\cdots+a_{1} \beta\right) \psi_{\gamma}\left(a_{0}\right)\right| \\
& =\left|\sum_{\beta \in I_{f}} \psi_{\gamma a_{d}}\left(\beta^{d}+\frac{a_{d-2}}{a_{d}} \beta^{d-2}+\cdots+\frac{a_{1}}{a_{d}} \beta\right)\right|
\end{aligned}
$$

Bounding $\left|S_{f}\right|$

Notes
\qquad
We introduce two expressions to help us discuss bounds:

$$
\Phi_{d}=\max _{\substack{f \in \mathbb{F}_{q}[x] \\ \operatorname{deg} f=d}} \frac{\left|S_{f}\right|}{\sqrt{q}}
$$

- Examining Φ_{d} gives us insight into the value c_{d} : For all $q, c_{d} \geq \Phi_{d}$.
- A related question: for a given q, what is the maximum $\left|S_{f}\right|$ possible?

$$
\left|S_{A_{q}}\right|=\max _{A \subset \mathbb{F}_{q}}\left|\sum_{\alpha \in A} \psi_{1}(\alpha)\right|
$$

- At least one polynomial produces A_{q} as an image set.
- This polynomial does not necessarily have degree relatively prime to p.
- Not every image set can be obtained as the image of a polynomial whose degree is relatively prime to p.

An Example of Warning

Notes
\qquad
Example
$-\operatorname{In} \mathbb{F}_{4}$ again.

- Examine $f(x)=x^{2}+x$ (p-linear!):

α	$f(\alpha)$
0	0
1	0
t	1
$t+1$	1

- Clearly no polynomial with degree 0 or 1 will have this image.
- Idea: We don't expect that degree 3 polynomials would be linear.
- Actual Proof: Just evaluate all degree 3 polynomials in $\mathbb{F}_{4}[x]$ and note that none of them have this image.
\qquad

Theorem
If $q=p^{m}$ then

$$
\left|S_{A_{q}}\right|= \begin{cases}2^{m-1} & p=2 \\ \frac{p^{m-1}}{2} \csc \left(\frac{\pi}{2 p}\right) & p>2\end{cases}
$$

The "interesting part" of the proof:

- Trace is an \mathbb{F}_{p}-linear transform, and surjects onto \mathbb{F}_{p}.
- \#(kerTr) $=p^{m-1}$
- Thus each element is hit p^{m-1} times.
- To find A_{q}, find A_{p} and then choose all the elements in the same equivalence classes.
This reduces the question to the case where $q=p$. The rest is "proof by calculus".

Bounding Theorem Proof Outline II

Notes
\qquad

- We are now summing distinct p th roots of unity, seeking the largest modulus possible.
- A proposed maximal sum must include all the roots of unity with angle $\leq \pi / 2$ to the sum.
- $p=2$ case is trivial. Assume p is odd.
- First stab: All of the p th roots of unity in quadrants I and IV?

$$
\sum_{j=-\lfloor p / 4\rfloor}^{\lfloor p / 4\rfloor} e^{\frac{2 \pi i j}{p}}=\frac{1}{2} \csc \left(\frac{\pi}{2 p}\right)
$$

- This is maximal, but obviously not unique.

Corollary

As $p \rightarrow \infty$ along the primes, $\left|S_{A_{q}}\right| \searrow \frac{q}{\pi}$

(14) University of California - Irvine

Joshua E. Hill (UC Irvine)
Weil Image Sums and Counting Image Sets
Graduate Colloquium
$35 / 51$

Notes

Subsection 2

Image Set Cardinality

- We have two eventually positive real valued functions
$A, B: \mathbb{N}^{k} \rightarrow \mathbb{R}^{+}$. Take x as an n-tuple, with $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$
- We'll write $|\mathrm{x}|_{\text {min }}=\min _{i} x_{i}$.

Definition

1. $A(\mathrm{x})=O(B(\mathrm{x}))$ if there exists a positive real constant C and an integer N so that if $|\mathrm{x}|_{\text {min }}>N$ then $A(\mathrm{x}) \leq C B(\mathrm{x})$.
2. $A(\mathrm{x})=\tilde{O}(B(\mathrm{x}))$ if there exists a positive real constant C^{\prime} so that $A(\mathrm{x})=O\left(B(\mathrm{x}) \log ^{C^{\prime}}(B(\mathrm{x})+3)\right)$

Naïve Algorithms

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Another connection between \# (V_{f}) and an algo-geometric structure:

Theorem

If $f \in \mathbb{F}_{q}[x]$ of positive degree d, then

$$
\#\left(V_{f}\right)=\sum_{i=1}^{d}(-1)^{i-1} N_{i} \sigma_{i}\left(1, \frac{1}{2}, \cdots, \frac{1}{d}\right)
$$

where $N_{k}=\#\left(\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{q}^{k} \mid f\left(x_{1}\right)=\cdots=f\left(x_{k}\right)\right\}\right)$ and σ_{i} is the i th elementary symmetric function on d elements.
(1.) University of California • Irvine

Proof Outline I

Notes
\qquad

- $V_{f, i}=\left\{x \in V_{f} \mid \#\left(f^{-1}(x)\right)=i\right\}$ with $1 \leq i \leq d$ forms a partition of V_{f}.
- Let $m_{i}=\#\left(V_{f, i}\right)$. Thus $m_{1}+\cdots+m_{d}=\#\left(V_{f}\right)$. Introduce a new value $\xi=-\#\left(V_{f}\right)$. We then have:

$$
\begin{equation*}
m_{1}+\cdots+m_{d}+\xi=0 \tag{1}
\end{equation*}
$$

- Define the space $\tilde{N}_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{q}^{k} \mid f\left(x_{1}\right)=\cdots=f\left(x_{k}\right)\right\}$. Then $N_{k}=\#\left(\tilde{N}_{k}\right)$.
- By a counting argument,

$$
\begin{equation*}
m_{1}+2^{k} m_{2}+\cdots+d^{k} m_{d}=N_{k} \tag{2}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Arrange this into a system of equations:

$$
\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
1 & 2 & \cdots & d & 0 \\
1 & 2^{2} & \cdots & d^{2} & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
1 & 2^{d} & \cdots & d^{d} & 0
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
\vdots \\
\xi
\end{array}\right)=\left(\begin{array}{c}
0 \\
N_{1} \\
N_{2} \\
\vdots \\
N_{d}
\end{array}\right)
$$

\qquad
\qquad
\qquad

Solve for ξ using Cramer's rule. There are some unfortunate details.
See the paper. :-)
(1.) University of California • Irvine

Joshua E. Hill (UC Irvine)

Variations on a Theme of Matrices

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- This equation is in terms of N_{k}, which we must establish.
- \tilde{N}_{k} isn't of any particularly desirable form: in particular, we can't assume that it is non-singular projective or an abelian variety (if it were, faster algorithms would apply!)
- We'll proceed through trickery.

Algorithm for finding \# $\left(V_{f}\right)$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Getting to "There" From "Here"

Define:

$$
F_{k}(\mathbf{x}, \mathbf{z})=z_{1}\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)+\cdots+z_{k-1}\left(f\left(x_{1}\right)-f\left(x_{k}\right)\right)
$$

- If $\gamma \in \tilde{N}_{k}$ then $F_{k}(\gamma, \mathbf{z})=0$.
- If $\gamma \in \mathbb{F}_{q}^{k} \backslash \tilde{N}_{k}$ then the solutions to $F_{k}(\gamma, \mathbf{z})$ form a ($k-2$)-dimensional subspace of \mathbb{F}_{q}^{k-1}.
- If we denote the number of solutions to $F_{k}(\mathbf{x}, \mathbf{z})$ as \# $\left(F_{k}\right)$, then we have

$$
\#\left(F_{k}\right)=q^{k-1} N_{k}+q^{k-2}\left(q^{k}-N_{k}\right)
$$

- So, we can solve:

$$
N_{k}=\frac{\#\left(F_{k}\right)-q^{2 k-2}}{q^{k-2}(q-1)}
$$

- And that's it!

Conclusion Outline

Notes
\qquad

1 Introduction

2 (Condensed) Literature Survey

- Cardinality of Image Sets
- p-adic Point Counting

3 Preliminary Results

- Weil Image Sum Bounds
- Image Set Cardinality

4 Conclusion (and Beyond)

- We outlined problems in finite fields concerning:

■ incomplete Weil exponentials sums (Weil Image Sums)
\qquad

■ the image set of a polynomial

- We surveyed literature relevant to these problems.
- We discussed new findings related to these problems.
(14) University of California • Irvine

Notes
\qquad
\qquad

Section 4

Conclusion (and Beyond)

- A first step at understanding this style of sum is understanding V_{f}.
- Calculating V_{f}.
- Estimating V_{f}.
- Refining bounds for or estimating μ.
- Refining the constant associated with the $O_{d}(\sqrt{q})$ term; current term is highly exponential in $d ; d^{O(1)}$ may be possible.
- We seek to investigate incomplete exponential sums evaluated on image sets.
- Work thus far has been with additive characters and Weil sums.
- Many of the same approaches would work with Weil sums of multiplicative characters.
- Other sum styles can also be investigated: incomplete Gauss and Jacobi sums may also yield results.
(14) University of California • Irvine

Joshua E. Hill (UC Irvine)

Remember What "Success" Means

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- The principal font is Evert Bloemsma's 2004 humanist san-serif font Legato. This font is designed to be exquisitely readable, and is a significant departure from the highly geometric forms that dominate most san-serif fonts. Legato was Evert Bloemsma's final font prior to his untimely death at the age of 46 .
- Equations are typeset using the MathTime Professional II (MTPro2) fonts, a font package released in 2006 by the great mathematical expositor Michael Spivak.
- The serif text font (which appears mainly as text within mathematical expressions) is Jean-François Porchez's wonderful 2002 Sabon Next typeface.
- The URLs are typeset in Luc(as) de Groot's 2005 Consolas, a monospace font with excellent readability.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Diagrams were produced in Mathematica.

Notes
\qquad

