
.

......
Harvey’s Average Polynomial Time Algorithms

Joshua E. Hill

Department of Mathematics, University of California, Irvine

Math 239B Arithmetic Geometry
January 6 and 8, 2014

http://bit.ly/198j5HY
v1.01, compiled March 18, 2014

1 / 46

http://bit.ly/198j5HY

Talk Outline

1 Introduction

2 The Sieve of Eratosthenes

3 Searching for Wilson Primes

4 Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes

5 Conclusion

2 / 46

Introduction Outline

1 Introduction
GOOOOOOOOOOOOOOOOOOOOOOOOOOOOALS!
Time Complexity Notes

2 The Sieve of Eratosthenes

3 Searching for Wilson Primes

4 Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes

5 Conclusion

3 / 46

Subsection 1

GOOOOOOOOOOOOOOOOOOOOOOOOOOOOALS!

4 / 46

A Tale of Two Complexities

I Calculating the number of elements can be hard.
I We often don’t have general algorithms that run in polynomial

time (with respect to p).
I We have two basic classes of responses:

Make the problem much smaller (extra hypotheses that impose
some nice structure.)
Make the problem much larger.

5 / 46

Say What!?!

Make the problem much...

Larger
(and then hope for a reasonable amortized runtime.)

6 / 46

Say What!?!

Make the problem much...

Larger

(and then hope for a reasonable amortized runtime.)

7 / 46

Say What!?!

Make the problem much...

Larger
(and then hope for a reasonable amortized runtime.)

8 / 46

So it begins...

We’ll look at a few examples:
I The Sieve of Eratosthenes
I Searching for Wilson Primes
I Calculate the zeta function for reductions of an arithmetic scheme

mod all primes less than some bound.

9 / 46

Papiere, Bitte

We’ll be exploring the following papers (the third provides the basic
algorithm used in the second):

I Edgar Costa, Robert Gerbicz, and David Harvey, A Search for Wilson
Primes.

I David Harvey, Computing Zeta Functions of Arithmetic Schemes

10 / 46

Subsection 2

Time Complexity Notes

11 / 46

Big-O Notation (and Family)

I We have two eventually positive real valued functions
A; B W Nk ! R. Take x as an n-tuple, with x D .x1; : : : ; xn/

I We’ll write jxjmin D mini xi.

.
Definition..

......

A.x/ D O.B.x// if there exists a positive real constant C and an integer N
so that if jxjmin > N then A.x/ � CB.x/. (i.e. A is bounded above by B
asymptotically.)

.
Definition..

......

A.x/ D o.B.x// if for all positive real constants C there is an integer N so
that if jxjmin > N then A.x/ � CB.x/. (i.e. A is dominated by B
asymptotically.)

12 / 46

“When I Use a Word...”

.
Definition..

......
An algorithm is considered polynomial time if it is time complexity
O.xk/ where k is a fixed positive integer and x is the input length.

.
Definition..

......

An algorithm is considered exponential time if it is time complexity
O.2x

k
/ where k is a fixed positive integer, and x is the input length.

13 / 46

The Sieve of Eratosthenes

1 Introduction

2 The Sieve of Eratosthenes

3 Searching for Wilson Primes

4 Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes

5 Conclusion

14 / 46

The Algorithm

I Determine the largest number you want to test, N.
I Make a bit-array (initialized to all 0s) of length N.
I Mark 1 as not prime (set the first entry to 1).
I Let k D 2
I Until k is larger than

jp
N
k
, do the following:

Mark every positive integer multiple of k greater than k and less
than or equal to N as not prime (set their corresponding bit array
entries to 1).
Let k be the next entry marked as prime.

I The values marked as prime are the primes less than or equal to N.

15 / 46

An Example of the Sieve

Figure : Sieve of Eratosthenes, N D 100

16 / 46

Computational Complexity

I k can only be a prime number.
I There are fewer than bN=kc values excluded for each value of k.
I Each step is just an addition of a value of size O.logN/.
I The total number of excluded values, d, is thus (by Mertens’

theorem)
d �

X
k�

p
N

k prime

bN=kc D O.N log logN/

I We can then read out the primes by looking for 0 bits in the
bitstring in O.N/.

I The runtime is thus O.d logN/ D O.N logN log logN/.
I This algorithm requires O.d logN/ storage.
I Even if we don’t assume a RAM model (and instead use a Turing

model) we can get a similar result using sorting.

17 / 46

A Note on O .N/

I O .N/ D O
�
elogN

�
is clearly exponential in logN (the size of N).

I O.N logN log logN/ is exponential in the size of N.
I We got �.N/ � N= logN primes from the algorithm.
I The amortized runtime per-prime is thus O.log2 N log logN/, which

is polynomial in the input size.

I Jazz Hands!

18 / 46

A Note on O .N/

I O .N/ D O
�
elogN

�
is clearly exponential in logN (the size of N).

I O.N logN log logN/ is exponential in the size of N.
I We got �.N/ � N= logN primes from the algorithm.
I The amortized runtime per-prime is thus O.log2 N log logN/, which

is polynomial in the input size.
I Jazz Hands!

19 / 46

Search for Wilson Primes Outline

1 Introduction

2 The Sieve of Eratosthenes

3 Searching for Wilson Primes

4 Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes

5 Conclusion

20 / 46

Wilson Primes

I By Wilson’s Theorem, we know that p is prime if and only if
.p � 1/Š � �1 .mod p/.

I For a prime p, define wp D ..p � 1/ŠC 1/=p .mod p/.
.
Definition..

......
A Wilson Prime is a prime where wp � 0 .mod p/, or equivalently when
.p � 1/Š � �1 .mod p2/.

I There are three known Wilson Primes: 5, 13, and 563.
I It is conjectured that there are an infinite number of Wilson

Primes.

21 / 46

WILSON!!!

I In general, the tests to see if a prime p is a Wilson prime are
exponential in the size of p.

I By using a dynamic programming technique called memoization,
one can (in aggregate) make this calculation more efficient.

I Idea: As p varies, we repeat quite a lot of arithmetic in calculating
.p � 1/Š.

22 / 46

I Wanted to be... A LUMBERJACK!

I We seek Wilson primes less than or equal to some fixed N.
I We first need to find all the primes up to N.
I We use the Sieve of Eratosthenes, which we have seen runs in

O.N logN log logN/.

23 / 46

Trees for the Forest: The Larch

I We’ll break the interval Œ1;N� into 2i roughly equal intervals:

Ui;j D

�
k 2 Z j j

N
2i
< k � .j C 1/

N
2i

�
I The recurrence relation Ui;j D UiC1;2j

`
UiC1;2jC1 provides a tree

structure.
I Let d D dlog2 Ne. Note

ˇ̌
Ud;j

ˇ̌
is either 0 or 1 for all j.

24 / 46

Trees for the Forest: The Pine

I Multiply together the elements in each set:

Ai;j D
Y
k2Ui;j

k

I By the recurrence relation for Ui;j we get Ai;j D AiC1;2j � AiC1;2jC1.
I Ad;j is either 1 (when Ud;j D ;) or k (when Ud;j D fkg).
I The Ai;j product tree can be computed from bottom (i D d) to top

(i D 0) using the above recurrence relation.
I Elements in the ith level are O.2�iN logN/ bits long.
I For fixed i, all the Ai;j can be computed in work factor

2i.2�iN logN/ log1C� N.
I There are log2 N levels, so the cost for computing the Ai;j tree is

N log3C� N.

25 / 46

Trees for the Forest: The Redwood

I Multiply together the squares of the prime elements in each set:

Si;j D
Y
p2Ui;j
p prime

p2

I The characteristics of Si;j are similar to those of Ai;j.
I By the recurrence relation for Ui;j we get Si;j D SiC1;2j � SiC1;2jC1.
I The Si;j product tree can be computed from bottom (i D d) to top

(i D 0) using the above recurrence relation.
I Elements in the ith level are at most O.2�iN logN/ bits long.
I The cost for computing the Si;j tree is less than N log3C� N.

26 / 46

Trees for the Forest: The Sequoia

I Calculate factorial parts and reduce.

Wi;j D
Y
0�r<j

Ai;j .mod Si;j/ D

�
j
N
2i

�
Š .mod Si;j/

I By convention, W0;0 D 1.
I By definition, WiC1;2j D Wi;j .mod SiC1;2jC1/.
I We can also construct WiC1;2jC1 D Wi;j � AiC1;2j .mod SiC1;2jC1/.
I We construct the Wi;j tree from top to bottom, which also requires

time N log3C� N.
I For prime p � N, j D

˙
2dp=N

�
� 1, then Ud;j D fpg, so Sd;j D p2 and

Wd;j D .p � 1/Š .mod p2/ D wp.
I Wilson quotients are thus in the bottom of the tree.

27 / 46

Trouble at the Mill

I The algorithm runs in N log3C� N.
I It requires significant storage. There is a time/memory trade off

that reduces the storage requirement.
I This algorithm is clearly exponential in the size of N.
I We got wp for �.N/ total values, so the amortized cost, per prime,

is asymptotically log4C� N, which is polynomial in N.

I Jazz Hands!

28 / 46

Trouble at the Mill

I The algorithm runs in N log3C� N.
I It requires significant storage. There is a time/memory trade off

that reduces the storage requirement.
I This algorithm is clearly exponential in the size of N.
I We got wp for �.N/ total values, so the amortized cost, per prime,

is asymptotically log4C� N, which is polynomial in N.
I Jazz Hands!

29 / 46

Counting Points on Hyperelliptic Curves Outline

1 Introduction

2 The Sieve of Eratosthenes

3 Searching for Wilson Primes

4 Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes

5 Conclusion

30 / 46

Phtttt! It’s Fresh!

I Based on a paper that is currently in draft form (dated January 6th).
I Introduces a set of related algorithms:

Calculate the zeta function of the reduction of an arithmetic
scheme, X, mod p (that is, Xp D X �Z Z=pZ) in time complexity
p1=2 log2C� p:
A somewhat slower variant with better space complexity.
An algorithm that finds all such Xp for all prime p < N in time
complexity N log3C� N.

31 / 46

The “Hypersurface in an Affine Torus” Case

I Let n � 1, q D pa with P n
Fq

denote projective n-space over Fq.

I Coordinates x0; : : : ; xn.
I T n

Fq
� P n

Fq
is an affine torus (x0 � x1 � � � xn ¤ 0).

I Let NF 2 FqŒx0; : : : ; xn� be a homogeneous polynomial of degree
d � 1, with p − d.

I X is the hypersurface cut out by NF.
I Fixed p case runs in

28n
2C16nn4nC4C�.d C 1/4n

2C7nC�a4nC4C�p1=2 log2C� p.
I Outputs

ZX.T/ D exp

0@X
r�1

ˇ̌
X
�
Fqr
�ˇ̌

r
Tr

1A
32 / 46

The General Case

I The general case of the algorithm applies to any arithmetic
scheme, X (that is, X is a scheme of finite type over Z).

I Think: the object is locally defined by polynomial equations in
finitely many variables over Z.

I X can be covered as a union of open affines.
I We can recursively reduce to the case where X is the disjoint finite

union of finitely generated spectra of Z-algebras, Vi.
I We use an inclusion/exclusion trick (due to Wan) to calculate the

zeta function of X in terms of the zeta functions a set of
hypersurfaces.

33 / 46

Basis of the Algorithm

I Follows the same general idea as Lauder-Wan (2008).
I Uses a “trace formula” that expresses ZX.T/ in terms of an

arbitrary p-adic lift of NF.
I Not the same trace formula as in Lauder-Wan.

34 / 46

Objects

I Zq is the ring of Witt vectors over Fq

I Note: Zq=pZq Š Fq.
I We do arithmetic within the ring using finite approximations,

Zq=p�Zq, with � � 1.
I To represent these elements, take an arbitrary lift of

Nf 2 .Z=p�Z/Œt�, a fixed monic irreducible polynomial of degree a.
Call this lift f, .

I We then have Zq=p�Zq Š .Z=p�Z/Œt�=Nf.
I Each element in Zq=p�Zq is thus represented as a polynomial of

degree less than a.

35 / 46

Trace Formula Preliminaries

I Let � W Fq ! Fq be the p-Frobenius map (˛ 7! ˛p).
I This map uniquely lifts to Zq.
I Take W ZqŒx� ! ZqŒx� defined as .G/ D

P
u �

�1.Gpu/xu.
I For k � 1 and H 2 ZqŒx�k define TH W ZqŒx� ! ZqŒx� as the

multiplication-by-H operator, that is TH.G/ D HG
I Define AH D ı THp�1.
I We’ll represent operators with respect to a basis of monomials.
I The submodule of degree k monomials is spanned by xu with

u 2 Bk.

36 / 46

The Trace Formula

I Let r, � and � be positive integers satisfying

� �
�

.p � 1/ar

I Let F 2 ZqŒx�d be any lift of NF.
I We then have

ˇ̌
X.Fqr/

ˇ̌
D .qr � 1/n

�C��1X
sD0

˛str.AarFs / .mod p�/

˛s D .�1/s
��1X
tD0

��

t

!
�

s � t

!
I Note that for sufficiently large p, � D 1 works.

37 / 46

Insert Tab A into Slot B

I The problem then reduces to finding AaFs.
I Let u; v 2 Bds.
I For F 2 ZqŒx�d, the matrix of AaFs on ZqŒx�ds with respect to the basis

Bds is
�a�1.Ms;p/ � � ��.Ms;p/Ms;p

I .Ms;p/v;u D .F.p�1/s/pv�u

I � is taken to act componentwise on matrices.

38 / 46

The Many-Prime Case

I First, we enumerate all the primes less than N (again using the
Sieve of Eratosthenes)

I Uses a tree structure (an accumulating remainder tree) as with the
Wilson Prime algorithm.

I Applies this idea to a recurrence formula that defines a set of
matrices used in the trace calculation.

I The many-prime case has time-complexity
28n

2C16nn4nC6C�.d C 1/4n
2C7nC�N log2 N log1C�.NkFk/.

39 / 46

There Sure Are Quite A Few “Slot B”s

I We want to perform this calculation across many p’s.
I The basic mechanism is reasonably general:

.
Theorem..

......

Let m � 1, ˇ � 1, � � 1, N � 2, and � 2 R with � > 1. Given E1; � � � ; EN�1
(with entries bounded suitably by �), a set of m � m matrices with entries
in ZŒk�=kˇ . We can then compute

Qp�1
iD1 Ei .mod p�/ for all primes p < N

in time m3ˇ.�C �/N logN log1C�.ˇ��N/.

40 / 46

Same Old Story, Not Much to Say

I Happily, this is very similar to the instance where we searched for
Wilson Primes.

I ` D dlog2 Ne

I These all form binary trees in exactly the same way as before.
I Si;t (loosely) partitions the integers 0; : : : ;N � 1 into 2i sets of

roughly equal size.
I Pi;t contains the primes of Si;t.
I The modulus tree is defined Mi;t D

Q
p2Pi;t p

�.
I The value tree Vi;t D

Q
j2Si;t Ej.

I The accumulating remainder tree is Ai;t D Vi;t�1Vi;t�2 � � � Vi;0
.mod Mi;t/.

I This last tree is constructed using the recurrence relations
AiC1;2t D Ai;t .mod MiC1;2t/ and AiC1;2tC1 D ViC1;2tAi;t
.mod MiC1;2tC1/.

41 / 46

Hearts are Broken, Everyday

I If we average this cost over all the primes less than N, we get a
polynomial algorithm.

I This algorithm (not just the many-p case) is the fastest known
algorithm of this type.

42 / 46

Section 5

Conclusion

43 / 46

Jazz Hands!

I This “amortized cost” style algorithm allows for use of a broader
class of tools.

I For some styles of problem, we really do mainly care about the
cost-per-result, rather than the cost of the entire operation.

I These algorithms are still “slow” with respect to input size.

44 / 46

Thank You!
45 / 46

Bibliography

I Edgar Costa, Robert Gerbicz, and David Harvey, A Search for Wilson
Primes.

I David Harvey, Computing Zeta Functions of Arithmetic Schemes

46 / 46

	Introduction
	GOOOOOOOOOOOOOOOOOOOOOOOOOOOOALS!
	Time Complexity Notes

	The Sieve of Eratosthenes
	Searching for Wilson Primes
	Computing Zeta Functions of Arithmetic Schemes Modulo Many Primes
	Conclusion

