Harvey’s Average Polynomial Time Algorithms

Joshua E. Hill

Department of Mathematics, University of California, Irvine

Math 239B Arithmetic Geometry
January 6 and 8, 2014
http://bit.1ly/1985j5HY

v1.01, compiled March 18, 2014

&g UNIVERSITY of CALIFORNIA - IRVINE

1/46


http://bit.ly/198j5HY

Talk Outline

H Introduction
The Sieve of Eratosthenes

Searching for Wilson Primes

Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes

Conclusion

&L;‘ UNIVERSITY of CALIFORNIA - IRVINE

2/46



Introduction Outline

H Introduction
m GOOO0O000000000000000000O0000O0ALS!
m Time Complexity Notes

S
‘1.5 UNIVERSITY of CALIFORNIA - IRVINE

3/46



Subsection 1
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A Tale of Two Complexities

» Calculating the number of elements can be hard.
» We often don’t have general algorithms that run in polynomial
time (with respect to p).
» We have two basic classes of responses:
m Make the problem much smaller (extra hypotheses that impose

some nice structure.)
m Make the problem much larger.
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)

Say What

Make the problem much...
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Say What!?!

Make the problem much...

Larger
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Say What!?!

Make the problem much...

Larger

(and then hope for a reasonable amortized runtime.)
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we’ll look at a few examples:
» The Sieve of Eratosthenes
» Searching for Wilson Primes

» Calculate the zeta function for reductions of an arithmetic scheme
mod all primes less than some bound.
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Wwe’ll be exploring the following papers (the third provides the basic
algorithm used in the second):

» Edgar Costa, Robert Gerbicz, and David Harvey, A Search for Wilson
Primes.

» David Harvey, Computing Zeta Functions of Arithmetic Schemes
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Subsection 2

Time Complexity Notes
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Big-O Notation (and Family)

» We have two eventually positive real valued functions
A,B: Nk — R. Take x as an n-tuple, with x = (x1,....,xp)

> We’ll write |X| i, = min;x;.

Definition
A(x) = O(B(x)) if there exists a positive real constant C and an integer N

so that if ||, > N then A(x) < CB(x). (i.e. A is bounded above by B
asymptotically.)

Definition

A(x) = o(B(x)) if for all positive real constants C there is an integer N so
that if |x| ., > N then A(x) < CB(x). (i.e. Ais dominated by B
asymptotically.)

v
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“When | Use a Word...”

Definition
An algorithm is considered polynomial time if it is time complexity
O(xk) where k is a fixed positive integer and x is the input length.

Definition
An algorithm is considered exponential time if it is time complexity
O(Zxk) where k is a fixed positive integer, and x is the input length.
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The Sieve of Eratosthenes

The Sieve of Eratosthenes
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The Algorithm

Determine the largest number you want to test, N.
Make a bit-array (initialized to all 0s) of length N.

Letk =2
Until k is larger than {\/ITIJ, do the following:

m Mark every positive integer multiple of k greater than k and less
than or equal to N as not prime (set their corresponding bit array
entries to 1).

m Let k be the next entry marked as prime.

>
>
» Mark 1 as not prime (set the first entry to 1).
>
>

\

The values marked as prime are the primes less than or equal to N.
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An Example of the Sieve
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Sieve of Eratosthenes, N = 100
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Computational Complexity

>

>

>

>

k can only be a prime number.
There are fewer than |[N/k| values excluded for each value of k.
Each step is just an addition of a value of size O(logN).

The total number of excluded values, d, is thus (by Mertens’
theorem)

d~ > |N/k| = O(NloglogN)
k<+/N

k prime

We can then read out the primes by looking for 0 bits in the
bitstring in O(N).

The runtime is thus O(dlog N) = O(NlogNloglogN).

This algorithm requires O(d log N) storage.

Even if we don’t assume a RAM model (and instead use a Turing
model) we can get a similar result using sorting.

)
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A Note on O (N)

O (N) = 0 (e'°8") is clearly exponential in log N (the size of N).
O(NlogNloglogN) is exponential in the size of N.
We got 7 (N) ~ N/ log N primes from the algorithm.

The amortized runtime per-prime is thus O(log? N log log N), which
is polynomial in the input size.

vy vyyy
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A Note on O (N)

O (N) = 0 (e'°8") is clearly exponential in log N (the size of N).
O(NlogNloglogN) is exponential in the size of N.
We got 7 (N) ~ N/ log N primes from the algorithm.

The amortized runtime per-prime is thus O(log? N log log N), which
is polynomial in the input size.

Jazz Hands!
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Search for Wilson Primes Outline

Searching for Wilson Primes
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Wilson Primes

» By Wilson’s Theorem, we know that p is prime if and only if
(p—1)!= -1 (mod p).
» For a prime p, definew, = ((p —1)! +1)/p (mod p).
Definition
A Wilson Prime is a prime where w, = 0 (mod p), or equivalently when
(p—1!=—1 (mod p?).

» There are three known Wilson Primes: 5, 13, and 563.

> It is conjectured that there are an infinite number of Wilson
Primes.
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WILSON

» In general, the tests to see if a prime p is a Wilson prime are
exponential in the size of p.

» By using a dynamic programming technique called memoization,
one can (in aggregate) make this calculation more efficient.

» Idea: As p varies, we repeat quite a lot of arithmetic in calculating

(p—"l
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| Wanted to be... A LUMBERJACK!

» We seek Wilson primes less than or equal to some fixed N.
» We first need to find all the primes up to N.

» We use the Sieve of Eratosthenes, which we have seen runs in
O(NlogNloglogN).
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Trees for the Forest: The Larch

» We’ll break the interval [1, N] into 2 roughly equal intervals:
N . N
> The recurrence relation U;j = Ujy1,2 [ [ Uit1,2j41 provides a tree

structure.
> Let d = [log, N]. Note |Uq,] is either 0 or 1 for all ;.
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Trees for the Forest: The Pine

» Multiply together the elements in each set:

> By the recurrence relation for U;; we get Ajj = Ajy 12 - Ajy1,2j41-

> Ag,is either 1 (when Ug; = 0) or k (when Ug; = {k}).

> The A;; product tree can be computed from bottom (i = d) to top
(i = 0) using the above recurrence relation.

> Elements in the ith level are O(27'Nlog N) bits long.

> For fixed i, all the A;; can be computed in work factor
2/(27'Nlog N) log' "¢ N.

> There are log, N levels, so the cost for computing the A;; tree is
Nlog*>teN.
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Trees for the Forest: The Redwood

» Multiply together the squares of the prime elements in each set:

Sij=[]»°

PEU;j
p prime

> The characteristics of S;; are similar to those of A;;.
> By the recurrence relation for U;j we get S;; = Sjy1,2j - Si+1,2j+1-

> The S;; product tree can be computed from bottom (i = d) to top
(i = 0) using the above recurrence relation.

> Elements in the ith level are at most O(27'Nlog N) bits long.
> The cost for computing the S;; tree is less than N log>T€ N.
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Trees for the Forest: The Sequoia

» Calculate factorial parts and reduce.

Wi = l_[ Aij (mod S;j) = ngJ' (mod S; )
0<r<j
By convention, Wp o = 1.
By definition, Wi 1, = W;; (mod Si112j41).
We can also construct Wiy qzj11 = Wj-Ajy1,2 (mod Siyq2i41)-
We construct the W;; tree from top to bottom, which also requires
time Nlog® ™ N.
» Forprimep <N, j= [de/N] —1, then Ugj = {p}, s0 Sq; = p? and
Waj = (p— 1! (mod p?) = wp.
» Wilson quotients are thus in the bottom of the tree.

vy vyy
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Trouble at the Mill

» The algorithm runs in Nlog®*¢ N.

> |t requires significant storage. There is a time/memory trade off
that reduces the storage requirement.

» This algorithm is clearly exponential in the size of N.

> We got w,, for =(N) total values, so the amortized cost, per prime,
is asymptotically log4+E N, which is polynomial in N.
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Trouble at the Mill

\

The algorithm runs in Nlog®*¢ N.

> |t requires significant storage. There is a time/memory trade off
that reduces the storage requirement.

v

This algorithm is clearly exponential in the size of N.

v

We got w,, for 7(N) total values, so the amortized cost, per prime,
is asymptotically log4+E N, which is polynomial in N.
» Jazz Hands!
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Counting Points on Hyperelliptic Curves Outline

Computing Zeta Functions of Arithmetic Schemes Modulo Many
Primes
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Phtttt! It’s Fresh!

» Based on a paper that is currently in draft form (dated January 6th).

» Introduces a set of related algorithms:

m Calculate the zeta function of the reduction of an arithmetic
scheme, X, mod p (that is, X, = X xz Z/pZ) in time complexity
1/2 |og2+e

] A somewhat slower variant with better space complexity.
m An algorithm that finds all such X, for all prime p < N in time

complexity Nlog>*¢ N.
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The “Hypersurface in an Affine Torus” Case

> Letn > 1, q = p?with Pﬁq denote projective n-space over I.
Coordinates xg, ..., X,.

T]gq C IP’]’F’q is an affine torus (xo - x1--- X, # 0).

Let F e Fg[Xo. . ...Xs] be a homogeneous polynomial of degree
d>1,withp } d.

X is the hypersurface cut out by F.

Fixed p case runs in
2 2
28n°+16npan+ate (f 4 1)4n*+Tn+egdn+adte 1/2 |gg2te

Outputs

2,07 = exp Z\x qu

r>1
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The General Case

» The general case of the algorithm applies to any arithmetic
scheme, X (that is, X is a scheme of finite type over Z).

» Think: the object is locally defined by polynomial equations in
finitely many variables over Z.

> X can be covered as a union of open affines.

» We can recursively reduce to the case where X is the disjoint finite
union of finitely generated spectra of Z-algebras, V;.

» We use an inclusion/exclusion trick (due to Wan) to calculate the
zeta function of X in terms of the zeta functions a set of
hypersurfaces.

4.5 UNIVERSITY of CALIFORNIA « IRVINE

33/46



Basis of the Algorithm

» Follows the same general idea as Lauder-Wan (2008).

» Uses a “trace formula” that expresses Zx(T) in terms of an
arbitrary p-adic lift of F.

» Not the same trace formula as in Lauder-Wan.
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> Zg is the ring of Witt vectors over I,

> Note: Zq/pZq = Fy.

» We do arithmetic within the ring using finite approximations,
Zq/p*Zq, with X > 1.

> To represent these elements, take an arbitrary lift of
f e (Z/p*7)[t], a fixed monic irreducible polynomial of degree a.
Call this lift f, .

» We then have Zq/p"Zq ~ (Z/p*Z)[t]/;‘.

» Each element in Zq/pAZq is thus represented as a polynomial of
degree less than a.
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Trace Formula Preliminaries

vy vyyy

\

v

Let ¢ : F; — 4 be the p-Frobenius map (« +— oP).

This map uniquely lifts to Zg.

Take  : Zg[x] — Zg[x] defined as ¥/ (G) = >, ¢ (Gpu)x“.
Fork > 1and H € Zq4[x]x define Ty : Z4[x] — Zq4[x] as the
multiplication-by-H operator, that is Ty(G) = HG

Define Ay = ¢ o Typ—1.
We’ll represent operators with respect to a basis of monomials.

» The submodule of degree kK monomials is spanned by x" with

u € By.
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The Trace Formula

» Letr, A and t be positive integers satisfying

- A
t= (p—MNar
> Let F € Zg[x]q4 be any lift of F.
» We then have
A+T—1
XEq)| = (@ =1" Y astrAE) (mod p*)
s=0

—1 )( )
Os = ( 1)5 ( t S t
t=0

» Note that for sufficiently large p, T = 1 works.
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Insert Tab A into Slot B

v

The problem then reduces to finding A% .
Let u,v € Bys.

For F € Zg4[x]4, the matrix of A% on Z4[x]4s with respect to the basis
Bds iS

\

\

¢ (Msp) -+ §(Ms p)Ms p
(Ms,p)v,u = (F(p_1)s)pv—u

¢ is taken to act componentwise on matrices.

v

v

B
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The Many-Prime Case

» First, we enumerate all the primes less than N (again using the
Sieve of Eratosthenes)

> Uses a tree structure (an accumulating remainder tree) as with the
Wilson Prime algorithm.

» Applies this idea to a recurrence formula that defines a set of
matrices used in the trace calculation.

» The many-prime case has time-complexity
28n2+16nn4n+6+e(d + 1)4n2+7n+€Nlog2 Nlog1+€ (N|IFID-
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There Sure Are Quite A Few “Slot B”’s

» We want to perform this calculation across many p’s.
» The basic mechanism is reasonably general:

Theorem

Letm=>1,8>1u>1N=>2 and p € R with p > 1. Given Eq,--- , Ey—4
(with entries bounded suitably by p), a set of m x m matrices with entries
in Z[k]/kP. We can then compute ]_[7;11 E; (mod p*) for all primes p < N
in time m3B(u + p)Nlog Nlog' "¢ (BupN).
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Same Old Story, Not Much to Say

» Happily, this is very similar to the instance where we searched for
Wilson Primes.

> £ = log, N]
» These all form binary trees in exactly the same way as before.

\

Sit (loosely) partitions the integers 0,...,N —1into 2/ sets of
roughly equal size.

P; + contains the primes of S; ;.

The modulus tree is defined M;; = [],cp, , P*-

The value tree Vi = [[cs, , £j-

The accumulating remainder tree is A; s = Vi r—1Vie—2 -+ Vio

(mod M; ;).

» This last tree is constructed using the recurrence relations

Ait12c = Aje (Mod Mitq2¢) and Ajq 2e+1 = Vig1,26Aie

(mod Mit1,2e41)- B Usversiny o Cavtronsia - Tevine

vy vyYyy
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Hearts are Broken, Everyday

» If we average this cost over all the primes less than N, we get a
polynomial algorithm.

» This algorithm (not just the many-p case) is the fastest known
algorithm of this type.

S
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Section 5

Conclusion
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» This “amortized cost” style algorithm allows for use of a broader
class of tools.

» For some styles of problem, we really do mainly care about the
cost-per-result, rather than the cost of the entire operation.

» These algorithms are still “slow” with respect to input size.
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Thank You!
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