
The Minimum of n Independent Normal Distributions

Joshua Hill

May 17, 2010

Problem: We have a race of n runners. Each runner’s event time can be viewed as a random variable, which
we’ll assume is distributed normally with a runner-specific mean and standard deviation for their time. The
jth runner’s time is distributed as Xj ∼ N

(
µj , σ

2
j

)
(that is, normally distributed with mean µj and standard

distribution σj).
First, let’s examine the n = 2 case, that is the chance in a two person race that the first runner wins. We want

Pr(X0 < X1) where X0 and X1 are distributed via different normal distributions (assumed independent). This
is equivalent to Pr((X0 −X1) < 0), so you’re subtracting two normal distributions (or adding X0 with −X1, it
doesn’t matter) which results in another normal distribution. (X0−X1) ∼ N(µ0−µ1, σ

2
0 +σ2

1), so you get a simple
calculation (an integral conducted via numerical methods or a table lookup) to figure what Pr((X0−X1) < 0) is.

For more than two runners, it becomes a bit harder.
The way one would actually, in practice, solve this problem is to program a simulation and run many thousands

of rounds of simulation given your particular data.
For a proper mathematical solution, the probability for player 0 to win in a race with n + 1 runners total is

Pr(X0 < Y), where
Y = min

1≤j≤n
Xj

That is, Y is the distribution of the smallest time from the remaining n runners.
To find the distribution of Y , we first look for its cumulative distribution function (CDF) (in a standard

setting, we would follow this up by taking the derivative of the CDF to get the PDF, but we don’t proceed in
this way).

We start with some results for a single variable:

Pr(Xj > a) = Fc(a) (Normal complementary cumulative distribution function)

= 1− Pr(Xj ≤ a)

= 1− 1

2

(
1 + erf

(
x− µj
σj
√

2

))

=
1

2

(
1− erf

(
x− µj
σj
√

2

))

=
1

2
erfc

(
a− µj
σj
√

2

)

Where erfc is the complementary error function, defined as

erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0

e−t
2

dt =
2√
π

∫ ∞
x

e−t
2

dt

The probability Y ≤ a can be more easily viewed as the probability of the complement; that is, what is the
chance that every Xj , (j ≥ 1) is strictly greater than a. This will be in terms of the complementary cumulative

1

distribution function for the distribution Xj , which we’ll call Fc,j . We can define the cumulative distribution
function for Y :

Pr(Y ≤ a) = 1− Pr(X1 > a and X2 > a and . . . and Xn > a)

= 1−
n∏
j=1

Pr(Xj > a) (the distributions are independent)

= 1−
n∏
j=1

Fc,j (a)

= 1−
n∏
j=1

(
1

2
erfc

(
a− µj
σj
√

2

))

= 1−
n∏
j=1

1√
π

∫ ∞
a−µj
σj
√

2

e−t
2

dt

= 1−
n∏
j=1

1

σj
√

2π

∫ ∞
a

e
−
(
t−µj
σj
√

2

)2

dt

= 1− 1∏n
j=1 σj

(√
2π
)n ∫ ∞

a

· · ·
∫ ∞
a

e
− 1

2

∑n
j=1

(
t−µj
σj

)2

dt1 . . . dtn

From this last form, we can phrase this in terms of a multivariate normal distribution, with a covariance
matrix

S =
(
σ2
i δi,j

)
i,j

=


σ2
1 0

σ2
2

. . .

σ2
n−1

0 σ2
n


With this convention, taking

t =

t1...
tn

 and µ =

µ1

...
µn



Pr(Y ≤ a) = 1− 1∏n
j=1 σj

(√
2π
)n ∫ ∞

a

· · ·
∫ ∞
a

e
− 1

2

∑n
j=1

(
t−µj
σj

)2

dt1 . . . dtn

= 1− 1√
detS

(√
2π
)n ∫

(a,∞)n
e−

1
2 (t−µ)S−1(t−µ)T dt

= 1−
∫
(a,∞)n

f(t) dt

where f(t) = 1√
detS(

√
2π)

n e−
1
2 (t−µ)S−1(t−µ)T is the PDF for this multivariate normal distribution.

We actually need Pr(Y > a), which, by the above, is clearly
∫
(a,∞)n

f(t) dt

We’ll refer to the PDF of X0 as g(s) = 1√
2πσ2

0

e
− 1

2

(
(s−µ0)2

σ20

)
. We want to calculate

Pr (X0 < Y) =

∫ ∞
−∞

Pr (X0 = s) Pr (Y > s) ds

=

∫ ∞
−∞

g(s)

∫
(s,∞)n

f(t) dt ds

=

∫
−(∞,∞)

∫
(s,∞)n

g(s)f(t) dt ds

As may be clear from the above, multiplying the PDFs from independent normal distributions gives a multi-
variate normal distribution, so the product of f and g yields another multivariate distribution in one additional
variable; the covariance matrix would be

W =
(
σ2
i δi,j

)
i,j

=


σ2
0 0

σ2
1

. . .

σ2
n−1

0 σ2
n


With this convention, taking

v =


v0
v1
...
vn

 and µf =


µ0

µ1

...
µn


and we get the PDF for this new distribution:

h(v) =
1

√
detW

(√
2π
)n+1 e

− 1
2 (v−µf)W−1(v−µf)

T

so our final probability is:

Pr (X0 < Y) =

∫
(−∞,∞)

∫
(s,∞)n

h(s, t1, . . . , tn) dtds

That’s a wonderful clear statement conceptually, but doing calculations using this multivariate case is imprac-
tical. To do calculations, it is much preferable to stop much much sooner in the calculation:

Pr (X0 < Y) =

∫ ∞
−∞

Pr (X0 = s) Pr (Y > s) ds

=

∫ ∞
−∞

g (s)

n∏
j=1

Fc,j(s) ds

=

∫ ∞
−∞

1√
2πσ2

0

e
− 1

2

(
(s−µ0)2

σ20

)
n∏
j=1

(
1

2
erfc

(
a− µj
σj
√

2

))
ds

The Mathematica code that does this calculation is:

WinProb [p l a y e r L i s t] := Module [{u , v} ,
u = PDF[p l a y e r L i s t [[1]] , x] ;
v = Product [I n t e g r a t e [PDF[p l a y e r L i s t [[j]] , t] , { t , x , I n f i n i t y }] ,

{ j , 2 , Length [p l a y e r L i s t] }] ;
NIntegrate [u∗v , {x , −I n f i n i t y , I n f i n i t y }]
]

Here, we simply pass in a list containing the player time distribution (the analysis above only supports passing
in normal distributions!).

To confirm that this works correctly, we can also create a routine to do this in simulation:

WinProbSim [p l a y e r L i s t , rounds] := Module [{ wins = 0 , cntr , curRound } ,
For [cntr = 0 , cntr < rounds , cntr++,

curRound = Map[RandomReal , p l a y e r L i s t] ;
I f [curRound [[1]] == Min [curRound] , wins++]
] ;

wins / rounds
]

Running this proceeds in the same way, other than the fact that we need to tell the routine how many rounds
to use in the simulation.

The intuitive case (where all runners have exactly the same characteristics) work out as expected (in the n
player case, player 0 has a probability of 1

n of winning.
If we instead examine a race between 20 runners (player 0 to 19) in the 100 meter dash, where all players

have an even time standard deviation of 1 second (wildly high, of course). Runners 1 through 19 have an average
event time of 9.58 seconds (the world record for this event). Runner 0’s mean time is shown as an advantage
from the central time of 9.58 seconds, so his mean race time varies from 9.58 (advantage is 0) to 4.58 (advantage
is 4). This advantage is shown on the x-axis. The probability that runner 0 wins is shown on the y-axis.

The code that implements this race is as follows:

FirstRace = Table [NormalDistr ibut ion [9 . 5 8 , 1] , { i , 1 , 1 9 }] ;
AdvData =

Table [{ adv , WinProb [Prepend [FirstRace , NormalDistr ibut ion [9 . 5 8 − adv , 1]]] } ,
{adv , 0 , 5 , . 0 5 }] ;

L i s t P l o t [AdvData , AxesLabel −> {”Advantage ” , ”Winning P r o b a b i l i t y ”}]

This produces the following graph:

To run the same race in simulation, we instead use this code:

AdvSimData =
Table [{ adv , WinProbSim [Prepend [FirstRace , NormalDistr ibut ion [9 . 5 8 − adv , 1]] ,

10000]} , adv , 0 , 5 , . 0 5 }] ;
L i s t P l o t [AdvSimData , AxesLabel −> {”Advantage ” , ”Winning P r o b a b i l i t y ”}]

With 10,000 simulation rounds, we get output that looks like this:

Looking at both graphs on the same axis shows us that this looks about as good as simulation data gets...

Let’s now examine the situation where there is a wider array of runners. In this race, we’ll include 10 runners,
with all runners having an event time standard deviation of 0.5 seconds (still ridiculously high). Runners 1-9 have
a mean time of 7.58 up to 11.58 seconds (they are each separated by 4/9 of a second). Runner 0’s mean time is
again shown as an advantage from the central time of 9.58 seconds, so it varies from 9.58 seconds (advantage is
0) to 4.58 seconds (advantage is 4). This advantage is shown on the x-axis. The probability that runner 0 wins
is shown on the y-axis.

Direct computation (via numerical approximation) is accomplished through the following code:

SecondRace = Table [NormalDistr ibut ion [9 . 5 8 + o f f s e t , . 5] , { o f f s e t , −2, 2 , 4 / 9}] ;
SecondRaceAdvData =

Table [{ adv , WinProb [Prepend [SecondRace , NormalDistr ibut ion [9 . 5 8 − adv , 0 . 5]]] } ,
{adv , 0 , 5 , . 0 5 }] ;

L i s t P l o t [SecondRaceAdvData , AxesLabel −> {”Advantage ” , ”Winning P r o b a b i l i t y ”}]

This yields the result:

Simulation is accomplished using the following code:

SecondRaceAdvSymData =
Table [{ adv , WinProbSim [Prepend [SecondRace , NormalDistr ibut ion [9 . 5 8 − adv , 0 . 5]] ,

10000]} , {adv , 0 , 5 , . 0 5 }] ;
L i s t P l o t [SecondRaceAdvSymData , AxesLabel −> {”Advantage ” , ”Winning P r o b a b i l i t y ”}]

Simulation gives us this result:

Here are both graphs on one axis:

So, again, everything behaves as predicted.

